

Curriculum for the Bachelor Degree in Electrical Engineering/Computer

# Curriculum For The Bachelor Degree In Electrical Engineering/Computer 2020

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

#### **Courses Description**

| BSE0205 | Engineering Drawing | 2(0-6) |
|---------|---------------------|--------|
|         |                     | -()    |

Drawing instruments and their use, lettering, geometric construction, dimensioning, free-hand sketching, Orthographies, isometric projections, sketching and sectioning. Computer drawing using autocad (AutoCAD), engineering applications.

**Prerequisite: CS101** 

BSE0102 Engineering Workshop 1(0-3)

Occupational safety and health in engineering workshops, mechanical forming of metals, machining operations, welding processes, carpentry works, electrical installation.

**Prerequisite: -**

BSC0401 Engineering Economy

3(3-0)

Engineering Economy: engineering economic concepts; interest formulas; decision making using present worth, future worth, annual worth, internal rate of return and benefit- cost ratio methods; payback analysis; depreciation.

Prerequisite: 80 credit hours

#### BSE 0201 Programming for Engineers 3(2-3)

This is a fast-paced introductory course to the C++ programming language. It is customized for the engineers with a little programming background. It covers C++ programming concepts, variables and basic data types, control structures and loops, functions; call by value and reference, arrays, structures, classes and objects, pointers and references to objects, files and streams. Weekly laboratory experiments will provide hands-on experience in topics covered in this course.

**Pre-requisite: CS101** 

BSE 0306 Numerical Methods BSE 0306

Errors analysis, roots of equations: bracketing and open methods, solutions of linear equations: gauss elimination, LU decomposition, matrix inverse, gauss-Seidel, curve representation and fitting, numerical differentiation and integration, solutions of differential equations: runge-kutta method, boundary-value and eigen-value problems.

Prerequisite: 30202102

#### BSE0203 Technical Writing & Professional Ethics 3(3-0)

This course deals with the definition of technical writing, its standards and how they differ from other types of writing. The basics of writing official reports, laboratory reports, projects and scientific papers. The common mistakes in writing and the process of writing citations and references. The concept of professional work and the definition of professional ethics and the acceptable and unacceptable professional practices. The sources of professional ethics and reasons for non-compliance with professional ethics. Identifying different forms of professions and explaining the importance of their relationship to ethics, standards of ethical behavior in science. Professional ethics in Jordanian laws and regulations.

**Prerequisite: AEL102** 

BSE 0202 Statistics and Probabilities for Engineers 3(3-0)

Descriptive mathematical and analytical statistics, probability, discrete and continuous random variables, probability density & distribution functions, statistics of random variables,

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقي قسم الهندسة الكهربائية

#### Curriculum for the Bachelor Degree in Electrical Engineering/Computer

random process, ergodicity & stationarity, autocorrelation function, power spectral density, estimating the autocorrelation function, power spectral density for raw data, input-output relation of linear systems and statistical hypothesis testing.

Prerequisite: 30202102

#### **ELE 0211 Electrical Circuits (1)** 3(3-0)

Units; Definitions: charge, current, voltage, power, energy, components of electrical circuits (independent and dependent sources, resistors, capacitors, inductors), Ohm's law, Kirchhoff's voltage and current laws, series, parallel, delta and star connections of the passive elements in electrical circuits, nodal and mesh analysis of electrical circuits, Thevenin and Norton Theorems, source transformation theorem, RL, RC and RLC circuits without source and with unit step forcing source.

Prerequisite: 30201102

#### **ELE 0212 Electrical Circuits (2)** 3(3-0)

Introduction to AC waveforms, AC RL, RC and RLC circuits, phasor diagram, impedance, resonant circuits, single phase and three phase circuits, magnetically coupled circuits and transformers, two-port networks, low pass, band pass and high pass filters.

**Prerequisite: ELE 0211** 

#### **ELE 0214 Electrical Circuits Lab** 1(0-3)

DC circuits, Ohm's law, Kirchhoff's voltage and current laws, network theorems; transient analysis of RL, RC, and RLC circuits, impedance concept, power and P.F, series and parallel resonance, three phase circuits, magnetically coupled circuits, filters.

**Prerequisite: ELE0212\*** 

#### **ELE 0213 Digital Logic Design** 3(3-0)

Number Systems and digital waveforms. Basic gates and logic functions. Boolean algebra, Boolean expressions. Logic minimization techniques. VHDL basics. Design simulation and synthesis tools for programmable logic devices. Combination logic building blocks including decoders, encoders, multiplexers, demultiplexers and magnitude comparators. VHDL for combinational circuits. Digital arithmetic, adders and subtractors. VHDL for arithmetic circuits. Basics of sequential circuits. Basic latches and flip-flops. Timing parameters and diagrams. Counter, shift registers, basic PLDs, CPLDs and FPGAs architectures. VHDL for binary counters and shift registers. State machines. System Design with state machines using VHDL. Memory devices and systems including RAM, ROM, FIFO, LIFO and dynamic RAM.

Prerequisite: BSE 0201

| ELE 0216 | Electronics (1) | 3(3-0) |
|----------|-----------------|--------|
|          |                 |        |

Semiconductor diode, diode applications, BJT transistor, biasing circuits for BJT transistor, FET transistor, biasing circuits for FET transistor, transistor circuits models, small signal amplifiers.

Prerequisite: ELE 0211 **ELE 0216 Electronics Lab (1)** 1(0-3)

Diode characteristics, rectification, regulation, limiting and clamping, BJT transistor

characteristics and applications, FET transistor characteristics and applications.

Prerequisite: ELE 0216

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

| <b>ELE 0321</b> | Signals and Systems | 3(3-0) |
|-----------------|---------------------|--------|
| ELE 0321        | Signais and Systems | 3(3-0) |

Representation and classification of signals and systems, continuous-time signals and systems, Fourier series representation, Fourier transform and its applications, Laplace transform, analog filters: LPF, BPF and HPF, sampling theorem, discrete-time signals and systems, introduction to Z-transform.

**Prerequisite: ELE 0211** 

#### ELE 0322 Communications and Data Transmission 3(3-0)

Analog and Digital signals, Analogue Modulation Techniques, Principles of Data Communications, Pulse Modulation Techniques, Error detection and correction, data compression, Line Coding Techniques, Frequency Division Multiplexing and Time Division Multiplexing.

Prerequisite: ELE 0321+ ELE 0213+ ELE 0205

#### ELE 0334 Control Systems 3(3-0)

Introduction to Control Systems, Mathematical Models of Systems, State Variable Models, Feedback Control System Characteristics, The Performance of Feedback Control Systems, The Stability of Linear Feedback Systems, The Root Locus Method, Frequency Response Methods, Stability in the Frequency Domain, The Design of Feedback Control Systems, The Design of State Variable Feedback Systems, Robust Control Systems.

Prerequisite: ELE 0321

#### ELE 0431 Control Systems Lab 1(0-3)

Time Response of first and Second order system, Study of characteristics, Transfer function of DC and AC motors, Characteristics of AC servo motor, Effect of feedback on DC servo motor, Effect of P, PD, PI, PID controller on a second order systems, State space model for classical transfer function using MATLAB — Verification, system identification , Lag and lead compensation — Magnitude and phase plot, verification of Routh Horvitz criteria, Root locus plotting.

Prerequisite: ELE 0334

#### ELE 0335 Electrical Machines (1) 3(3-0)

Magnetic circuits; single-phase transformers: types; construction; ideal and practical transformers; equivalent circuit; testing; voltage regulation and efficiency; three-phase transformers: construction; connections and groups; in-rush currents and harmonics; preventive maintenance and testing; direct current machines: construction and classification; elementary DC machine; excitation; windings; EMF; torques and power relations; armature reaction and commutation; DC generators: performance characteristics and applications; DC motors: performance characteristics; starting; speed control and applications preventive maintenance.

Prerequisite: ELE 0212

## ELE 0228 Microprocessors Systems 3(3-0)

Introduction to microprocessors and microcomputers. Microprocessors' evolution, architecture, programming model, buses and control signals. Introduction to Real-mode and protected-mode memory addressing. Introduction to Assembly programming (one of the latest 16-bit or 32-bit microprocessors can be chosen, e.g., Intel, Zilog, Motorola). Data

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

movement instructions (different addressing modes), Arithmetic instructions: addition, subtraction, comparison, multiplication and division. Logical, shifts and rotate instructions. Stack, load-effective address, software interrupts and calling subroutine and macro. Jump instructions. Counters and time delays. String instructions. String comparisons. Code conversion. Program and machine control instructions. Direct Memory Access .Program development. Introduction to memory and I/O interface.

**Prerequisite: ELE 0213** 

**ELE 0328** 

#### **Microprocessors Systems Lab**

1(0-3)

Writing, implementing and debugging assembly programs on Intel x-86 microprocessors. The lab also provides the facility to interface the microprocessor with different circuits such as A/D converters, stepper motors, multi-digit displays, sensors etc.

Prerequisite: ELE 0228

**ELE 0205** 

#### Linear Algebra

3(3-0)

Simultaneous linear equation systems and matrices. Gaussian elimination, orthogonal projection, Determinants, vector and matrix spaces, Inner product spaces, linear transformation. Eigenvalues and eigenvectors. Diagonalization and quadratic forms. Singular value decomposition. Modeling and applications in electrical engineering.

Prerequisite: 30202102

**ELE 0541** 

#### **Graduation Project (1)**

1(0-1)

Project under the supervision of one of an academic staff in the department, on an assigned specification topic in the related specialization. This is the first part of the project; it will normally involve literature review, theoretical work and some laboratory or fieldwork.

Prerequisite: pass 120 Cr. Hrs.

**ELE 0542** 

#### **Graduation Project (2)**

3(0-3)

Project 2 is the second part of the project and will normally involve design, analysis and conclusions of the study and the submission of a final report and discussion by a committee in the department.

Prerequisite: ELE 0541

**ELE 0442** 

#### **Field Training**

3(0-3)

Training for 8 weeks in the field of the related specification in an approved public or private sector.

Prerequisite: pass 115 Cr. Hrs.

**ELE 1311** 

#### **Electric and electronic Measurements**

3(3-0)

Measurements and the generalized measurement system. Analog instruments. Instrument transformers. Measurement of power and energy. DC and AC bridges. Transducers. Electronic measuring instruments. Digital instruments. Oscilloscopes. Recording instruments.

**Prerequisite: ELE 0216** 

**ELE 0335** 

#### **Electrical Machines (1)**

3(3-0)

Magnetic circuits; single-phase transformers: types; construction; ideal and practical transformers; equivalent circuit; testing; voltage regulation and efficiency; three-phase transformers: construction; connections and groups; in-rush currents and harmonics;

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

preventive maintenance and testing; direct current machines: construction and classification; elementary DC machine; excitation; windings; EMF; torques and power relations; armature reaction and commutation; DC generators: performance characteristics and applications; DC motors: performance characteristics; starting; speed control and applications preventive maintenance.

**Prerequisite: ELE 0212** 

#### ELE 5216 Digital Logic Design Lab 1(0-3)

This lab introduces students to the fundamentals of designing and building digital circuits using hardware ICs as well as HDL. The lab includes an introduction HDL, and focuses on building combinational circuits such as parallel adder, multiplexers and decoders using HDL and hardware components. While the second part of the lab deals with building sequential circuits in hardware and describing them in HDL using behavioral modeling.

Pre. Request: ELE 0213

#### ELE 5361 Computer Architecture and Organization 3(3-0)

This course covers basic topics about computer architecture and organization; central processing unit, micro-program control and control unit, arithmetic processor, memory units, bus structures, interrupt structures. Taxonomies of computer architectures; addressing methods, programs control, processing units, I-O organization, arithmetic, main-memory organization, peripherals, microprocessor families, RISC/CISC architectures, pipelining, multi-cores, synchronous and asynchronous models. Von Neumann/Harvard architectures; memory and cache organization; virtual memory; parallel computing and multithreading; a basic background on the computer performance evaluation; Amdahl's law. Operating system principles are also briefly touched.

Pre. Request: ELE 0228

#### ELE 5364 Computer Architecture and Organization Lab 1(0-3)

A set of experiments for describing and testing a range of combinational and sequential designs using hardware description language (VHDL or Verilog) and implementing them on FPGA. More advanced experiments to design, test and implement, possibly using CAD tools, parts of a computer including ALU, register, memory, and control circuit. A simple computer design project can be requested preferably showing both synchronous/asynchronous modules (consumed power, silicon area and critical delay may be measured).

Pre. Request: ELE 5361

#### ELE 5461 Embedded Systems 3(3-0)

Basic introduction to microcontroller-based embedded systems design, development and implementation. Embedded System types; Introducing PIC 16 Series: Architecture Overview of PIC16F84A, The 16F84A Memory, Power Up and Reset; Building Assembly Programs: 16 Series Instruction Set; Parallel Ports (I/O interfacing); PIC 16F87XA: Architecture Overview, Special Memory Operations; The physical interface; Interrupts, Counters and Timers: Working with Interrupts, Counters and Timers, Watchdog Timer, Sleep Mode, Capture Mode, Compare Mode, PWM Module, ADC; Serial Communication; Data Acquisition and other related topics.

Pre. Request: ELE 5362+ELE 5361

ELE 5251 Object Oriented Programming 3(2-3)

**Electrical Engineering Department** 



# . قسم الهندسة الكهربائية

#### Curriculum for the Bachelor Degree in Electrical Engineering/Computer

To learn the fundamental concepts and techniques behind object-oriented programming in C++. Review of control structures, data types and functions. Data Abstraction ADT. Encapsulation and information hiding. Classes, attributes and methods (operations). Objects, instantiation, and constructors. Software reuse and reengineering. Inheritance. Overloading. Polymorphism. Templates. In addition, graphical user interface will also be discussed.

Request: BSE 0201

#### **ELE 5252 Data Structure and Algorithms** 3(3-0)

Data types: records, files, and sets. Dynamic data structure. Single, double, and circular linked lists and gueues. Stacks and binary trees. Shell sort, guick sort, binary search, and hashing. Data compression. Definitions of algorithms. Design & analysis Algorithms: Divide and conquer, Greedy algorithm. Dynamics programming. Backtracking. Branch and bound technique. NP-hard and NP-complete problems. Asymptotic notations. Performance measurement. Sorting and searching: algorithms and lower bound Abstract data types and classes. Data structures: stacks, queues, lists, trees, heaps, and search tree, tries, a hashing. Graphs: representation, depth-first-search, and breadth-first-search.

Pre. Request: ELE 5251

#### **ELE 5462 Embedded Systems Lab** 1(0-3)

Introduction to embedded systems design tools and hardware programmers. Experiments using both simulation and practical implementation of the basic building blocks of a microcontroller including SW and HW delays, counters, interrupts, PWM generation, I/O techniques and requirements, A/D conversion, serial communications, USART and DC motor control. Experiments to explore the system design process using hardware-software co-design process. By the end of this course, students are supposed to present small individual/group projects based on low-cost embedded platforms and open software such as Microchip PIC microcontrollers and MPLAB IDE/Arduino/Raspberry Pi/FPGA...

Pre. Request: ELE 5461

#### **ELE 5466 Parallel Processing Systems** 3(3-0)

Implicit parallelism/ limitations, Explicit Parallelism; Parallel Computing Platforms; multicore processors; classification of parallel architectures; multiprocessor architectures; interconnections networks; abstract parallel machine models; Graphs for parallel computations, Principles of Parallel Algorithm Design, templates for parallel algorithms; Decomposition Techniques, Degree of Concurrency, Critical Path Length, Task Interaction Graphs, Processes and Mapping, Partitioning techniques, Characteristics of Tasks, Basic Communication Operations One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Introduction to Distributed Systems, Synchronization for Distributed System.

Pre. Request: ELE 5467

| <b>ELE 5254</b>     | Data Structure and Algorithms Lab                             | 1(0-3)              |
|---------------------|---------------------------------------------------------------|---------------------|
| In this course, the | e student is practically trained in building software that us | ses data structures |

that are covered in the course of Data Structure and Algorithms (ELE 5252). The student is expected to acquire individual and teamwork skills in preparing this type of software.

Pre- Request: ELE 5252

**ELE 5362 Operating systems** 3(3-0)

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### Curriculum for the Bachelor Degree in Electrical Engineering/Computer

This course enables students to understand and implement operating systems functions in managing computer systems component. It includes the following major topics: Introduction to Hardware and Software Concepts; Process and CPU Scheduling, Threads, Synchronous and Concurrent Execution, Deadlock and Indefinite Postponement; Memory Management: Physical and Virtual Memory; Management of External Storage and I/O Devices: Files Management; Performance and Optimization; Security and Protection; and Distributed Systems.

Pre. Request: ELE 5252

For Communication and Software Engineering [ELE 3272, Pre-req.]

#### ELE 5354 Data Base Systems 3(3-0)

Basic concepts of databases. DBMS components. Transaction managements. Data modeling. Entity relationships diagrams. Relational databases. Database integrity constraints. Relational Algebra. Dependencies, schema designs normalization and redundancy elimination. By the end of the course, students are expected to be familiar with many of the principles and concepts related to databases and how these are applied in real database systems by presenting small individual/group projects.

Pre. Request: ELE 5252

For Communication and Software Engineering [ELE 3272, Pre-req.]

#### ELE 5455 Data Base Systems Lab 1(0-3)

Experiments in designing databases using the DBMS system, such as Oracle/SQL, The students are expected to implement individual projects to refine their database development skills using the latest tools, programs and concepts covered in ELE 5354 Course.

Pre. Request: ELE 5354

#### ELE 5453 Artificial Intelligence and Machine Learning 3(3-0)

Fundamentals of machine learning and artificial intelligence. Concept of learning. Evaluating hypotheses. Supervised learning, unsupervised learning, regression and reinforcement learning. Bayesian learning. Ensemble Methods such as Genetic Algorithm, Decision Tree, Naïve Bayes, k-Nearest Neighbors, Back Propagation neural networks and their applications in computer engineering.

Pre. Request: ELE 5251+BSE 0202

#### ELE 5454 Artificial Intelligence and Machine Learning Lab 1(0-3)

Introduces representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Applications of problem solving using various search techniques. Decision support system and its applications. Applications of identification trees, neural nets (Shallow and deep), genetic algorithms, and other learning paradigms. Speculations on the contributions of human vision and language systems to human intelligence. The students are expected to implement individual projects to refine their AI development skills using the latest tools, programs and concepts covered in ELE 5453 Course.

Pre. Request: ELE 5453

ELE 5563 Parallel Processing Systems Lab 1(0-3)

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming applications, Threads, Multithreaded applications parallel algorithms for selected problems including similar techniques like sorting, matrix, tree and graph problems. The student performs a set of experiments to gain skills in developing parallel programs and using parallel hardware and parallel development environments. The student learns how to effectively use parallel hardware and tackle parallel processing issues such as partitioning, coordination, and communications.

Pre. Request: ELE 5466

#### ELE 5551 Advanced Programming

3(2-3)

This course exposes students to the depth and breadth of modern programming practice, with the goal of making students better programmers. It is, however, an advanced level module in which some advanced programming concepts are taught. The emphasis in this course is on concepts and techniques of programming rather than the language itself. Students will do significant amount of programming tasks/projects.

\*The Department Council may also provide advice to specify the topics in this course. Topics of this course include problem solving, advanced data structures, dynamic programming, graph algorithms, minimum spanning trees, shortest path algorithms, computational geometry, randomized algorithms, network flow problems, string algorithms, approximate computing and number theory, etc.

Pre. Request: ELE 5252

#### ELE 5467 Advanced Computer Architecture 3(2-3)

This course focuses on advanced system-level architecture techniques for devices such as personal computers, servers, and embedded or portable systems. It covers topics such as cache hierarchies, modern memory systems, storage and IO systems, virtualization, clusters, fault-tolerance, and low-power design. It also covers the interactions between the hardware and software layers in such systems. An introduction to performance analysis and optimization techniques for small-scale and large-scale systems. Vector/SMID/GPU processing.

Pre. Request: ELE 5361

#### ELE 5512 Advanced Digital Design

3(3-0)

Advanced topics in combinational logic design: use of CAD, timing characteristics, system decomposition, arithmetic modules, PLD design, ALU design, and use of standard combinational modules. Introduction to HDL and its use in combinational logic design. FPGA. Advanced topics in sequential system design: using standard sequential modules, timing characteristics, effect of state code, modularization, design of complex sequential systems. Using HDL to describe sequential systems. Strategies and methods used in digital system design, Real-world digital design projects, Design for testability.

Pre. Request: Finishing 90 credit hours + ELE 5361

| ELE 5565 Special Topics in Computer Engineering                             | 3(3-0)              |
|-----------------------------------------------------------------------------|---------------------|
| *The Department Council specifies the topics in this course. Topics include | e up-to-date issues |
| in the computer engineering domain.                                         |                     |
| Pre. Request: Finishing 90 credit hours + Dens                              | artment annroval    |

ELE 5559 Fuzzy Logic and Neural Networks 3(3-0)

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

Introduction to the fundamental concepts of fuzzy systems. Fuzzy sets, t-norms and s-norms, fuzzy relations, approximate reasoning, structure analysis of fuzzy systems, construction of fuzzy systems from data, Introduction to neuro-fuzzy systems. Implementation of fuzzy concepts to computer engineering applications (fuzzy control system).

Pre. Request: Finishing 90 credit hours

#### ELE 5568 Computer Performance Evaluation

3(3-0)

Introduction to floating-point arithmetic and error analysis. Fundamentals of computer design. Technology trends. Performance metrics. Performance evaluation. Measurement techniques and tools. Workload characterization. Data presentation. Statistical methods for analyzing measured data. The quantitative approach: experimental design and analysis. Model types. Hardware Description Languages. Event-driven simulation. Introduction to queuing theory and modeling. Modeling and simulation packages and tools.

Pre. Request: Finishing 90 credit hours + ELE 5361

#### ELE 5527 Digital Image Processing 3(3-0)

This course will introduce the students to the fundamental techniques of the following: acquisition of the digital image processing (equipment, sampling, quantization, and color representation), enhancement of digital images in spatial and in frequency domains (smoothing sharpening, edge detection, thresholding, histogram equalization, morphological operations, etc.), conversion the digital image into Fourier and other transforms, , feature identification, image compression, application to models of human and machine vision.

**Pre. Request: Finishing 90 credit hours + ELE 0321** 

## ELE 6461 Fundamentals of Computer Networks 3(3-0)

Introduction to the fundamental principles underlying telecommunication and computer networks. The course introduces the concepts of network architecture, protocols, layers, and the TCP/IP and OSI reference models. Covers topics in the application layer, transport, network, data link, and physical layers of the protocol stack with concentration on the link layers. Data link layer services: Error detection and correction, multiple access Control. Principles of Wireless Networks, Principles of Network Security.

[Pre-req. ELE 0322]

# For Communication and software engineering Pre. Request: ELE 4461 (synchronous) ELE 6463 Internet of Things 3(3-0)

Introduction to Internet of Things, Definitions and Characteristics of IoT, Physical Design of IoT, Things in IoT, IoT Protocols, Logical Design of IoT, IoT Functional Blocks, To introduce students to the fundamentals of Internet of Things (IoT) and embedded computing. This course covers IoT applications, Wireless protocols, Wearable sensors, Home environment sensors, Behavior detection sensors, Data fusion, processing and analysis, Data communications, Architectural design issues of IoT layers, Security and privacy issues in IoT.

[Pre-req. ELE 6466]

| <b>ELE 6464</b>   | Computer Networks Lab                                     | 1(0-3)            |
|-------------------|-----------------------------------------------------------|-------------------|
| The Computer N    | Networks Lab consists of a set of experiments: setting    | g up the PC and   |
| configuring the N | IIC, establishing a LAN, Router and network tools, router | configuration and |
| router protocols  | Securing networks using routers. Configuring switches     | Network address   |

**Electrical Engineering Department** 



# جامعة البلقاء التطبيقية قسم الهندسة الكهربائية

#### **Curriculum for the Bachelor Degree in Electrical Engineering/Computer**

conversion, Introduction to wireless network s and configuration.

[Pre-req. ELE 6461]

For Communication and software engineering Pre. Request: ELE 6461 (synchronous)

ELE 6468 Network Programming 3(2-3)

Overview of network programming and OSI reference model. Data Links and Transport Layers, Ethernet, TCP/IP protocol suite. Python Scripting, strings, lists, tuples, sets, dictionary, arrays, loops function and classes definition, exceptions, inheritance, and libraries overview. Files, TCP/IP and UDP sockets programming Client/Server, threaded servers programming, multicast. Mail and handling packages, encoders, iterators, headers, SMPT, and ftp servers etc. Python CGI module, XHTML, Flask, request, response objects, SQL, and web forms handling, cookies, ecommerce.

[Pre-req. ELE 6466]

#### ELE 6466 Networks Protocols 3(3-0)

Consolidate knowledge learned in ELE 647 through hands-on measurement and implementation of network protocols (link layer, IP layer, transport layer) and further experiment with state-of-the-art network architectures and applications. The course lectures will cover the following topics: network programming over TCP/UDP sockets; application-layer protocols (DNS, HTTP, P2P); multimedia protocols (video streaming, VoIP, video telephony, virtual reality); data center networking and cloud computing; software-defined networking; wireless and mobile networks architecture and core protocols (LTE, WiFi, 5G, IoT); Security in computer networks.

[Pre-req. ELE 6461]

ELE 6465 Wireless Networks 3(3-0)

The primary objective of this course is to learn the fundamental principles underlying wireless communication networks and systems. The topics include, wireless communication fundamentals, wireless communication techniques and technologies, Wireless Personal Area Networks (WPAN), Wireless Local Area Networks (WLAN) and Wireless Mobile Networks (WMN). Wide Area Networks including cellular networks and cellular data networks.

[Pre-req. ELE 6466]

## ELE 6472 Cyber Security Principles 3(3-0)

The course introduces the real-world of cybersecurity challenges that organizations face. The challenges will be examined both how systems are exploited by attackers, and how to secure systems or respond to threats from the defender's perspectives, attack and defense strategies for computing resources. The security principles of computer and networks systems. Discusses various attack techniques and how to defend against them. Computer attacks and defenses, malicious attacks. Operating system holes, web security, e-mail, botnet, malware, social engineering attacks, privacy, and digital rights management. Authentication, authorization, multi-level security. The course will also introduce cyber security management concepts, including security operations, risk management, security engineering and security architecture, as well as provide guidance on different career paths specializing in cybersecurity.

[Pre-reg. ELE 6461]